تشکیل شده است که در برخی از معادن آهن یافت میشود(mangnetite)انسان از قرنها پیش از میلاد مسیح آهنربای طبیعی را میشناختهاست. آهنربای طبیعی از یکی از اکسیدهای آهن به نام مگنتیت
«magnet»
نام انگلیسی آهنربا نیز به همین دلیل است و از مگنتیت-ماده تشکیل دهنده آن-آمده است.مگنتیت را برای اولین بار در شهر مگنزیا کشف و استخراج کرده اند.در بعضی منابع آمده که مگنزیا منطقهای در استان تسالی در یونان است و در بعضی دیگر آن را واقع آسیای صغیر در استان مانیسا در ترکیهٔ کنونی دانستهاند.یونانیان دست کم از ۶۰۰ سال پیش از میلاد مسیح که «تالس ملطی» در نوشتههایش به این کانی اشاره کرده آن را میشناختهاند. نخستین کاربرد آهنربا استفاده از آن در قطبنما بود.چینیان از حدود قرن دهم و اروپاییان از حدود قرن دوازدهم میلادی از قطبنما استفاده میکردهاند. این کانی را بعدها سنگ لودستون نامیدند که به معنای «سنگ راهنما»است و اشاره به استفاده از آن برای جهت یابی در قطب نما دارد.در آن دوران؛انسان هیچ دانشی از طرز کار قطبنما و خواص مغناطیسی آهنربا نداشت و این مقوله کاملاً با خرافات آمیخته بود
آسیای صغیر
ترکیه
یونان
نخستین تلاشها برای تشخیص خرافات از واقعیت، توسط شخصی به نام«پیتر پرگرینوس»در قرون وسطایی در ایتالیا انجام گرفت.پرگرینوس در خدمت ارتش پادشاه سیسیل بود و ظاهراً در آن جا یک مهندس نظامی بود. او در تحقیقات خود بر روی آهنربا برای نخستین بار از روش مشاهده و آزمایش استفاده کرد. پرگرینوس اولین کسی بود که وجود دو قطب متمایز را در آهنربا کشف کرد و برای اشاره به آنها واژه «قطب»را ابداع کرد.وی با استفاده از قطعههای شناور سنگ لودستون آزمایشهایی ساده ترتیب داد و مشاهده کرد که قطعهٔ باریکی از این سنگ همیشه در جهت خاصی قرار میگیرد و دو قطب همنام یکدیگر را دفع و دو قطب ناهمنام یکدیگر را جذب میکنند و نیز این که با مالیدن آهن به کانی لودستون، خود آهن نیز به آهنربا تبدیل میشود. وی تمام آنچه تا آن زمان دربارهٔ آهنربا شناخته شده بود را به همراه نتیجهٔ تحقیقات مهماش در رسالهای گردآوری و در ۱۲۶۹ منتشر کرد
در طول سه قرن بعد استفاده از قطبنما همچنان ادامه داشت اما پیشرفت علمی خاصی به دست نیامد. گام مهم بعدی را در این زمینه پزشک و فیزیکدان انگلیسی ویلیام گیلبرت(۱۵۴۴-۱۶۰۳)برداشت.او نخستین کسی بود که به بررسی علمی آهنربا و مغناطیس پرداخت و باورهای خرافی پیرامون آن را زدود. گیلبرت در سال ۱۶۰۰ میلادی کتاب معروف خود با عنوان«درباره آهن ربا، اجسام آهنربایی و زمین به مثابه آهنربای بزرگ»را به زبان لاتین نوشت و در آن به بیان نتایج تحقیقات خود پرداخت. او ویژگیهای نیروهای جاذبهٔ الکتریکی و مغناطیسی را بررسی کرد و تفاوت الکتریکیسیته و مغناطیس را مشخص کرد. وی کشف کرد که با نصف کردن یک آهنربا مجدداً دو قطب تازه تشکیل میشود. اما مهمترین کشف او این بود که زمین خود یک آهنربای بزرگ است. با این کشف معلوم شد چرا سوزن قطبنما همیشه در جهت خاصی قرار میگیرد یا چرا هنگامی که به صورت معلق قرار گیرد، یک سر آن به سمت زمین متمایل میشودتا زمان گیلبرت قویترین آهنربا همان کانی لودستون بود. گیلبرت متوجه شد که با قرار دادن قطعههای آهن نرم روی لودستون، میتوان قدرت آهنربایی این سنگ را افزایش داد. او کلاهکهایی آهنی را به دو سر قطعههای لودستون نصب کرد و به گفتهٔ خودش «آهنربای مسلح» را ساخت که در زمان خود قویترین آهنربای موجود بود. گیلبرت در کتابش سه روش شناخته شدهٔ آن زمان برای تبدیل فولاد به آهنربا را شرح داد
مالیدن فولاد به کانی لودستون
گداختن یک میلهٔ فولادی و چکشکاری آن در حالی که در امتداد شمال-جنوب (جهت میدان مغناطیسی زمین) قرار دارد
قرار دادن یک قطعه فولاد گداخته (سرخ شده) در جهت میدان مغناطیسی زمین و رها کردن آن تا زمانی که سرد شود
او همچنین متوجه شد که میلههای فولادیای که برای زمانهای طولانی مثل بیست یا سی سال در امتداد میدان مغناطیسی زمین قرار میگیرند، مثل میلههای پنجرهها، بدون نیاز به گداختن، به آهنربا تبدیل میشوند. تا حدود دو قرن بعد، روشهای اصلی ساخت آهنربا همینها بود.با توجه به پیشرفت علم در آن زمان،گیلبرت نتوانست از این فراتر برود؛اما او راه را برای فیزیکدانان بعدی صاف و هموار کرده بود
ویلیام گیلبرت
در قرن هجدهم میلادی، فیزیکدان فرانسوی کولن برهمکنش بین دو آهنربای باریک و دراز را بررسی کرد و با استفاده از ترازوی پیچشی، نیروهای دافعه و جاذبهٔ بین قطبهای همنام و ناهمنام را به صورت کمّی اندازهگیری کرد. او هر قطب آهنربا را با یک«مقدار مغناطیسی»یا«قطب مغناطیسی»مشخص کرد و مشاهده کرد که نیروی بین آنها با حاصلضرب مقدارهای مغناطیسی نسبت مستقیم و با مجذور فاصلهٔ آنها از یکدیگر نسبت عکس دارد. این رابطه شبیه رابطهٔ نیروی الکتروستاتیکی بین بارهای الکتریکی است. اما کولن متوجه شد که بر خلاف بارهای الکتریکی، قطبهای مغناطیسی را نمیتوان از هم جدا کرد و علاوه بر آن دو قطب یک آهنربا همیشه مقدار مغناطیسی برابری دارند. با این مشاهده، کولن فرض کرد که دو قطب مغناطیسی در ذرهٔ بنیادی سازندهٔ آهنربا از هم تفکیک ناپذیرند. به عبارت دیگر او پذیرفت که هر ذرهٔ کوچک این جسم (اتم، مولکول یا گروه کوچکی از اتمها یا مولکولها) آهنربای کوچکی است با دو قطب در دو انتها. این قدمی مهم در توسعهٔ نظریهٔ مواد مغناطیسی در آینده بود.در قرن نوزدهم مطالعات بیشتری روی رابطه الکتریسیته و مغناطیس انجام شد؛اما گامهای اساسی را در این دوران مایکل فارادی برداشت. او با استفاده از نتایج کارهای دانشمندانی مانند آمپر و اورستد، به مطالعه و آزمایش در زمینهٔ الکتریسیته و مغناطیس پرداخت. فارادی در ۱۸۲۱ کشف کرد که الکتریسیته میتواند باعث حرکت فیزیکی آهنربا شود. این پدیده اساس کار موتورهای الکتریکی است. وی در ۱۸۳۱ میلادی نیز کشف کرد که حرکت فیزیکی آهنرباها میتواند جریان الکتریسیته تولید کند که این پدیده نیز اساس کار ژنراتورهای برق است.فارادی مطالعات بیشتری روی آهنربا و مغناطیس انجام داد و در ۱۸۴۵ مواد را به دو دسته تقسیم کرد: مواد«پارامغناطیس»که میتوانند به صورت طبیعی خاصیت مغناطیسی داشته باشند و مواد«دیامغناطیس»که میدان مغناطیسی نمیتواند در آنها نفوذ کند.در آن زمان عناصر کشف شده،آزمایش شدند و اکثر آنها،دیامغناطیس بودند و فقط ۳عنصر آهن،نیکل و کبالت و بعضی ترکیب های آنها «فرومغناطیس»بودند؛یعنی میتوانستند خاصیت آهنربایی خود را بعد از دور شدن آهنربای اصلی،حفظ کنند و به آهنربای دائمی تبدیل شوند
در دههٔ ۱۹۵۰، «آهنرباهای فریت» یا سرامیکی توسط شرکت فیلیپس کشف و ارائه شدند. این آهنرباها سرامیکهایی هستند که از ترکیب اکسید آهن با فلزهای دو ظرفیتی مانند باریم، سرب یا استرانسیم ساخته میشوند. توان آهنربایی آنها کمتر از آلنیکوها است اما قیمت تمام شدهٔ آنها پایین بود و در سطحی وسیع به کار گرفته شدند. اما پیشرفت انقلابی در این زمینه در دههٔ ۱۹۶۰ رخ داد. در این دهه خانوادهٔ دیگری از آهنرباها موسوم به «آهنرباهای خاکی کمیاب» کشف شد. همانطور که از نامشان پیداست این آهنرباها از ترکیبات عنصرهای خاکی کمیاب ساخته میشوند. آنها توان بسیار بالایی دارند. نخستین آهنربای این خانواده ترکیبی از ساماریم و کبالت بود که توانی معادل۶۴داشت.سپس این دو عنصر با فرمول دیگری ترکیب شدند و آهن رباهایی با توان۶۴ و سپس با انجام پژوهشهای بیشتر توان آنها به ۱۵۸ نیز رسید.با استفاده از فرایندهای خاص متالورژی و نیز افزودن عنصرهایی مانند وانادیم، تانتال، زیرکونیم و نیوبیم به این ترکیب، آهنرباهایی با توان ۲۳۸ به دست آمد. در ۱۹۸۳ آهنرباهای نئودیمیم-آهن-بور کشف شدند که میتوان آنها را نسل سوم آهنرباهای عنصرهای خاکی کمیاب دانست. این خانواده به «آهنرباهای نئودیمیم» معروفند.هماکنون آهنرباهایی از این خانواده با توان ۴۰۰ به صورت انبوه تولید میشوند
منبع:ویکی پدیا